Articles tagged with "dynamodb"

How to accidentally create read-only DynamoDB items

In a recent Developing on AWS course I was faced with an interesting question about DynamoDB. What happens if you create an item that features attributes of a global secondary index with a data type that doesn’t match the index? My intuition was wrong, let’s check out what actually happens.

Streamlined Kafka Schema Evolution in AWS using MSK and the Glue Schema Registry

In today’s data-driven world, effective data management is crucial for organizations aiming to make well-informed, data-driven decisions. As the importance of data continues to grow, so does the significance of robust data management practices. This includes the processes of ingesting, storing, organizing, and maintaining the data generated and collected by an organization. Within the realm of data management, schema evolution stands out as one of the most critical aspects. Businesses evolve over time, leading to changes in data and, consequently, changes in corresponding schemas. Even though a schema may be initially defined for your data, evolving business requirements inevitably demand schema modifications. Yet, modifying data structures is no straightforward task, especially when dealing with distributed systems and teams. It’s essential that downstream consumers of the data can seamlessly adapt to new schemas. Coordinating these changes becomes a critical challenge to minimize downtime and prevent production issues. Neglecting robust data management and schema evolution strategies can result in service disruptions, breaking data pipelines, and incurring significant future costs. In the context of Apache Kafka, schema evolution is managed through a schema registry. As producers share data with consumers via Kafka, the schema is stored in this registry. The Schema Registry enhances the reliability, flexibility, and scalability of systems and applications by providing a standardized approach to manage and validate schemas used by both producers and consumers. This blog post will walk you through the steps of utilizing Amazon MSK in combination with AWS Glue Schema Registry and Terraform to build a cross-account streaming pipeline for Kafka, complete with built-in schema evolution. This approach provides a comprehensive solution to address your dynamic and evolving data requirements.

Serverless Cross-Account Microservices

When setting up a microservice architecture, each individual service is often owned and managed by a different team. To achieve a higher level of resource isolation, and allow for more granular security and cost management, each service team usually deploys its resources into a dedicated AWS account. While this type of distributed approach offers many benefits in terms of productivity, scalability, and resiliency, it introduces another layer of complexity in regard to AWS cross-account communication and microservice consumption. In this blog post, I would like to show you how you can leverage AWS services like Amazon API Gateway, Lambda, DynamoDB, and VPC Endpoints in combination with Terraform to build a fully-managed and serverless cross-account microservice architecture.

Cross Account Kafka Streaming: Part 1

When discussing high performant real-time event streaming, Apache Kafka is a tool that immediately comes to mind. Optimized for ingesting and transforming real-time streaming data in a reliable and scalable manner, a great number of companies today rely on Apache Kafka to power their mission-critical applications and data analytics pipelines. In this blog series, I would like to show you how you can leverage Amazon MSK and Terraform to set up a fully managed, cross-account Apache Kafka streaming pipeline on AWS. In this first part, we will set up the MSK Kafka cluster and producers. The second part will show you how you can set up distributed Kafka clients in different AWS accounts and communicate with the MSK cluster via AWS VPC Endpoints.

Cross Account Kafka Streaming: Part 2

When discussing high performant real-time event streaming, Apache Kafka is a tool that immediately comes to mind. Optimized for ingesting and transforming real-time streaming data in a reliable and scalable manner, a great number of companies today rely on Apache Kafka to power their mission-critical applications and data analytics pipelines. In this blog series, I would like to show you how you can leverage Amazon MSK and Terraform to set up a fully managed, cross-account Apache Kafka streaming pipeline on AWS. In the first part, we already set up the MSK Kafka cluster and producers. The second part will show you how you can set up distributed Kafka clients in different AWS accounts and communicate with the MSK cluster via AWS VPC Endpoints.

Implementing Pessimistic Locking with DynamoDB and Python

I will show you how to implement pessimistic locking using Python with DynamoDB as our backend. Before we start, we’ll review the basics and discuss some of the design criteria we’re looking for. In an earlier post, I outlined to you how to implement optimistic locking using DynamoDB. There, I explained some of the reasons why locking is useful and which issues it can prevent. If you’re unfamiliar with the topic, I suggest you check that one out first.

Getting a near-real-time view of a DynamoDB stream with Python

DynamoDB streams help you respond to changes in your tables, which is commonly used to create aggregations or trigger other workflows once data is updated. Getting a near-real-time view into these Streams can also be helpful during developing or debugging a Serverless application in AWS. Today, I will share a Python script that I built to hook into DynamoDB streams. Before we begin, I suggest you read my blog post that contains a deep dive into DynamoDB streams and how they’re implemented because we’ll be using these concepts today.